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The poss ib i l i ty  of using known techniques of study of the phys icochemica l  c h a r a c t e r i s t i c s  of 
high weight p o l y m e r s  to obtain informat ion  on the s t r u c t u r e  of solutions of high po lymer s  in 
which reduct ion in turbulent  r e s i s t a n c e  occurs  is shown. 

Many exper imen t s  have  es tabl i shed the fact  that  turbulent  r e s i s t a n c e  is d e c r e a s e d  by addition to a 
low molecu la r  weight solvent  of high po l ym er s  with a l inear  long chain s t ruc tu re .  Depending on the type 
of po lymer ,  opt imum m a s s  concentra t ion va r i e s  f rom 0.005 to 0.75% (see, for example ,  [1-3]). The v a r y -  
ing ef fec t iveness  of high po l ym er  addi t ives,  which usual ly  can be compensa ted  to some  degree  by varying 
concentrat ion [1], mani fes t s  i t se l f  in pecu l ia r i t i e s  of the solution s t r u c t u r e  [2, 4]. Methods of qual i ta t ive 
ana lys i s  of po lymer  solution s t r u c t u r e  based  on accu ra t e  exper imenta l  techniques have led to the compi l -  
ation of hydrodynamic  c h a r a c t e r i s t i c s  of var ious  flows [2, 5, 6]. In addition, by using known methods for  
the study of phys icochemica l  c h a r a c t e r i s t i c s  of high p o l y m e r s  [7, 8], informat ion can be obtained on the 
s t r u c t u r e  of high po l ym er  solut ions by v i s c o s i m e t r i c  m e a s u r e m e n t s .  

Studies were  p e r f o r m e d  with a cap i l l a ry  constant p r e s s u r e  v i s c o s i m e t e r  with liquid the rmos tab i l i zed  
to ~0.05~ (Fig. 1). Constant drop  with d i scha rge  in the cap i l l a r i e s ,  m e a s u r e d  by a se t  of m a n o m e t e r s  
and p i e z o m e t r i c  tubes,  was mainta ined by thrott l ing ni t rogen into the manos ta t  of the v i s c o s i m e t r i c  v e s se l .  
Liquid flow ra te  was de te rmined  by weighing on an ADB-300m analyt ical  ba lance  a g lass  container  which 
in te rcep t s  the liquid s t r e a m  with s imul taneous  switchon of the SK-1N t i m e r .  A set  of g lass  cap i l l a r ies  of 
d i ame te r  (0.2-4.2)10 -3 m and length 0.09-1.425 m ensured  that m e a s u r e m e n t s  were  p e r f o r m e d  in the shea r  
s t r e a m  ra te  range  7 = 25-8.105 sec  -1. In accordancewi th  Bouss inesq ' s  r ecommenda t ion  [9], the cap i l l a r -  
ies  had a smooth en t rance  configuration.  

Cal ibra t ion exper imen t s  with t r a n s f o r m e r  oil of known v i scos i ty  and dis t i l la te  at t = 5-25~ d e t e r -  
mined the Hagenbach co r rec t ion  m to the Poiseui t le  equation. 
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on the bas i s  of which the tension at the cap i l l a ry  wall during p o l y m e r  solution flow was calculated:  
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Using Eq. (1), the co r rec t ion  m was wri t ten as the d i f ference  of two d imens ion less  ra t ios :  

L 32 
l i t  : =  Eu 

d Re (3) 

The exper imenta l  data (~150 points) in the range  Re = 500-2000, Eu = 5-35, and L / d  = 200-450 
were  approximated  with a mean  square  e r r o r  of ~6% by the following functions: 
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Fig. i. Schematic  d i ag ram of v i s c o s i m e t r i c  appara tus .  1) cap-  
i l l a r i e s ;  2 ) p i e z o m e t r i c  tubes;  3 ) m a n o s t a t ;  4 ) m a n o m e t e r ;  5) 
pneumosys t em;  6) VN-461 vacuum pump; 7) TS-24 the rmos ta t ;  
8) v i s c o s i m e t r i c  vesse l ;  9) e lec t romagne t ;  10) SK-1N t i m e r -  
ca l ib ra to r ;  11) rece iv ing  ves se l .  

m == 1.5Eu -~176 (4) 

( d t~oi~176 m .... 1.13 -/-~- . (5) 

In [10], for  g lass  cap i l l a r ies  with smooth ent rance  and exit,  co r r ec t ion  m as a function of Reynolds 
number  was obtained exper imen ta l ly  in the fo rm 

m ,-, 0.037 l~e ~ '~ . (6) 

Equation (6) d i s ag rees  with the data obtained significantly,  which is evidently connected with the fact 
that the effect  of the re la t ive  length L /d  is absorbed  into Eq. (6). 
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Fig. 2. P o l y m e r  solution flow curves  in logar i thmic  ana-  
morphos i s :  1) CMC, 2) pAA. Numbers  on curves  indi- 
cate  1 ) C . 1 0 3 ,  2 ) C ' 1 0 5  . r ,  N/m2; 4Q/rrr 3, sec  -1. 
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Fig. 3. Reduced viscosi ty  of CMC solutions versus  
concentrat ion.  Numbers on curves a re  values of 
�9 10-3, sec - t .  

Using power approximations of consistency flow curves  r = f(4Q/wr 3) of water solutions of po lyac ry -  
lamide (PAA) and the sodium salt  of earboxymethylcel lulose (CMC), it was established that use of Eq. (4) 
or Eq. (5) with Eq. (2) instead of the general ly  employed m = 1.12 permi ts  a significant improvement  in 
the accuracy  of the values of the consis tency index K' and the non'Newtonian behavior  index n ' .  

Continuous t ransformat ion  of the high polymer  solution s t ruc ture  with change in concentrat ion and 
s h e a r  s t ra in  rate ,  which is ref lected in the flow curves (Fig. 2), may be revealed by using known concepts 
of the concentrat ion dependence of the reduced viscosi ty  [7, 8]: 

 -K3 l, J: K, (7) 
qC 

The pa rame te r  K 1 for a concrete  solution charac te r i zes  both d i rec t  interaction of the molecules  with 
each other, reflecting the kinetics of fluctuating multiplet contacts,  and that t ransmi t ted  through the sol-  
vent (hydrodynamic in ter ference  in dilute solutions). In shear  flow the equilibrium interact ion of the mac-  
romolecules  is disrupted,  and with increase  in shear  ra te  the hydrodynamic orientation, decreas ing the 
extinction angle, leads to reduction in the mutual contact t ime of molecular  associat ions ,  which finally is 
ref lected in both decrease  in charac te r i s t i c  viscosi ty  and in dec rease  in the Haggins pa r ame te r  [7, 8]. 

The curves obtained for reduced viscosi ty  of CMC solutions as functions of concentrat ion and shear  
ra te  (Fig. 3), while reflecting the s t ruc tura l  changes which occur ,  indicate one more  peculiar i ty .  This 
is that at C < 0.75% a viscosi ty  anomaly is observed,  connected with passing the "cr i t ical  concentration." 
Developing the concepts of Staudinger, the viscosi ty  anomaly in weakly concentrated polymer  solutions is 
present ly  related to "uncoiling" of macromoleeu la r  associat ions and adsorpt ion p rocesses  on the solid 
walls. The "cr i t ica l  concentration" C ,  dec reases  significantly with increase  in molecu!ar  weight and 
depends on interact ion between macromoleeules  and solvent.  Numerous investigations have shown that 
the concentrat ion dependence of ~?sp/C for  C < C ,  is determined by the ionogenie proper t ies  of the 
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Fig. 4. Concentra t ion dependence of reduced  v i scos i ty  
of wa te r  solutions of PAA (1), PEO (2, 3,4) and guar  
gum (5). 1) Authors '  exper iments ;  2,3) data of [11]; 
4, 5) data of [1]. Numbers  on curves ,  1) ~ -10 -4, sec-1; 
2) ~ = 160-350 s ec - l ;  3) 25; 4) 0.1-10; 5) (0.3-300)-103 . 

m a c r o m o l e c u l e s .  In solut ions of po lye lec t ro ty tes  at high dilutions a continuous i nc r ea se  in ~ s p / C  is ob- 
se rved ,  produced by po lye lec t ro ly t i c  swelling of po lymer  assoc ia t ions ,  while for  nonionogenic m a c r o m o l e -  
cules a d e c r e a s e  in ~?sp/C as a function of shea r  r a t e  or  indi f ference  of ~?sp/C to solute concentrat ion is 
m o r e  c h a r a c t e r i s t i c  [7, 8]. 

The exper imen ta l ly  obtained cu rve  of reduced v i scos i ty  of PAA ve r sus  concentra t ion and shea r  r a t e  
c l e a r l y  i l l u s t r a t e s  po lye lec t ro ly t ic  swelling in the concentra t ion range  C < C . ,  while the calculated curves  
of ~ s p / C  = f(C) using the data of [1, 11] indicate  the nonionogenic p r o p e r t i e s  of the solutes  polyethylene 
oxide (PEO) Polyox WSR-301 and guar  gum (Fig. 4). The  differ ing c h a r a c t e r  of the curves  ~sp /C  = f(C, 
~) for  PAA, PEO, and guar  gum a lso  indicates  such s t ruc tu ra l  pecu l i a r i t i e s  as the in ternal  r igidi ty  of the 
PAA m a c r o m o l e c u l e  in compar i son  to the m o r e  f lexible PEO and guar  gum m a c r o m o l e c u l e s .  According 
to the data of [11], in the range  "~ = 160-350 sec  - i  hydrodynamic  or ienta t ion is compensa ted  by the c o r r e -  
sponding effect  of PEO m a c r o m o l e c u l e  elongation. With d e c r e a s e  in shea r  r a t e  contact  in terac t ions  be -  
tween the m a c r o m o l e c u l e s  b e c o m e  m o r e  and m o r e  signif icant ,  and as # -~ 0, the molecu les  evidently fo rm 
a continuous th ree  d imensional  la t t ice  s t r u c t u r e  (Fig. 4). The vary ing  [~?] values  obtained for  PEO a r e  
p robab ly  the consequence of unequal mo lecu l a r  weights of the Polyox WSR-301 samples  used in [1] and [11]. 

A continuous v i scoe las t i c i ty  in the high p o l y m e r  solut ions,  which is a consequence of m a c r o m o l e c u l e  
in teract ion,  appea r s  at low values of s h e a r  ra te ,  differing for  each po lymer .  Thus,  in CMC solutions the 
v i scoe la s t i c  p r o p e r t i e s  a r e  p r e s e r v e d  to h igher  shea r  r a t e s  (K t ~ 0 at  ~) -> 5.104 sec  - t )  than in PEO solu-  
t ions,  in which hydrodynamic  fo rces  d is rupt  m a c r o m o l e c u l a r  bonds even at T > 160 sec -1. The po ly mer  
solutions studied h e r e  have a common c h a r a c t e r i s t i c  pecul ia r i ty ,  in that  the l imit ing values of the Toms  
effect a r e  obse rved  at C < C .  (Figs.  3, 4). In this connection the r e su l t s  of [12] a r e  of g rea t  in te res t ,  
where  on the bas i s  of an exper imenta l ly  obse rved  adsorpt ion  of Polyox WSR-301 molecules ,  which is 
c h a r a c t e r i s t i c  of C < C , ,  the effect  of reduced  r e s i s t a n c e  is explained. Some d i f fe rences  in the rheody-  
namics  of PEO and PAA solutions c h a r a c t e r i z e d  by m a c r o m o l e c u l a r  r igidi ty  f r o m  PEO and CMC solutions 
where ,  as mentioned above,  v i scoe las t i c i ty  is c h a r a c t e r i s t i c  at low shea r  r a t e s  and or ienta t ion effects  
a r e  c h a r a c t e r i s t i c  at high shea r  r a t e s  were  noted in [13, 14]. 

Thus,  the phys icomechan ica l  s t ruc tu ra l  c h a r a c t e r i s t i c s  of p o l y m e r - s o l v e n t  s y s t e m s  complemen t  the 
t radi t ional  rhee logica l  p a r a m e t e r s  of non-Newtonian behav ior  and mus t  be cons idred  in compil ing r e su l t s  
of var ious  rheodynamic  expe r imen t s .  
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NOTATION 

is the stress at capillary wall, N/m2; 
is the capillary radius, m; 
is the capillary length, m; 
is the measured pressure drop along capillary with liquid flow, N/m2; 
is the liquid flow rate in capillary, m3/see; 
is the density, kg/m3; 
is the viscosity, N-see/m2; 
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n, n', K, K' 

C 
C ,  
K1 
•sp = (K7 n - l -  1)n -1 
[7/] = lim (Kq n-1 -- 1)/(~C) 

CoO 

is the Hagenbach correction; 
is the capillary diameter,  m; 
is the mean liquid velocity across capillary, m/see ;  
is the Euler number; 
is the Reynolds number; 
is the shear strain rate,  sec-i ;  
are  the rheologieal parameters  determined for sections of flow curves 
rect i l inear  in logarithmic anamorphosis; 
is the mass concentration; 
is the "crit ical  "concentration"; 
is the Haggins parameter ;  
is the reduced viscosity; 
is the character is t ic  viscosity. 
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